Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA.
نویسندگان
چکیده
Catalases, peroxidases, and catalase-peroxidases are important enzymes to cope with reactive oxygen species in pro- and eukaryotic cells. In the filamentous fungus Aspergillus nidulans three monofunctional catalases have been described, and a fourth catalase activity was observed in native polyacrylamide gels. The latter activity is probably due to the bifunctional enzyme catalase-peroxidase, which we characterized here. The gene, named cpeA, encodes an 81-kDa polypeptide with a conserved motif for heme coordination. The enzyme comprises of two similar domains, suggesting gene duplication and fusion during evolution. The first 439 amino acids share 22% identical residues with the C terminus. Homologous proteins are found in several prokaryotes, such as Escherichia coli and Mycobacterium tuberculosis (both with 61% identity). In fungi the enzyme has been noted in Penicillium simplicissimum, Septoria tritici, and Neurospora crassa (69% identical amino acids) but is absent from Saccharomyces cerevisiae. Expression analysis in A. nidulans revealed that the gene is transcriptionally induced upon carbon starvation and during sexual development, but starvation is not sufficient to reach high levels of the transcript during development. Besides transcriptional activation, we present evidence for posttranscriptional regulation. A green fluorescent protein fusion protein localized to the cytoplasm of Hülle cells. The Hülle cell-specific expression was dependent on the developmental regulator StuA, suggesting an activating function of this helix-loop-helix transcription factor.
منابع مشابه
The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture.
Here we have characterized the putative Zn(II)2Cys6 transcription factor RosA from the filamentous fungus Aspergillus nidulans. The rosA gene encodes a protein of 713 aa, which shares 38% sequence similarity to Pro1 from Sordaria macrospora. In contrast to Pro1, which promotes the transition from protoperithecia to perithecia, RosA is a negative regulator of sexual development in A. nidulans. T...
متن کاملLAMMER Kinase LkhA Plays Multiple Roles in the Vegetative Growth and Asexual and Sexual Development of Aspergillus nidulans
LAMMER kinase plays pivotal roles in various physiological processes in eukaryotes; however, its function in filamentous fungi is not known. We performed molecular studies on the function of the Aspergillus nidulans LAMMER kinase, LkhA, and report its involvement in multiple developmental processes. The gene for LkhA was highly expressed during reproductive organ development, such as that of co...
متن کاملAspergillus nidulans conidiation genes dewA, fluG, and stuA are differentially regulated in early vegetative growth.
Microarray analysis was used to identify transcriptional changes in early vegetative growth of the filamentous fungus Aspergillus nidulans. The results suggest that the previously identified conidiation genes dewA, fluG, and stuA may function in isotropic expansion during early vegetative growth and asexual reproduction.
متن کاملNapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans
The redox-regulated transcription factors (TFs) of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs) to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also i...
متن کاملThe Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans.
The filamentous fungus Aspergillus nidulans reproduces asexually with conidiospores and sexually with ascospores, both of which are the result of complex morphogenetic pathways. The developmental decisions for both ways of reproduction largely depend on the action of stage-specific transcription factors. Here we have characterized the putative Zn(II)(2)Cys(6) transcription factor NosA (number o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 1 5 شماره
صفحات -
تاریخ انتشار 2002